The Width of Verbal Subgroups in the Group of Unitriangular Matrices over a Field

نویسنده

  • Agnieszka Bier
چکیده

Let K be a field and let UTn(K) and Tn(K) denote the groups of all unitriangular and triangular matrices over field K, respectively. In the paper, the lattices of verbal subgroups of these groups are characterized. Consequently the equalities between certain verbal subgroups and their verbal width are determined. The considerations bring a series of verbal subgroups with exactly known finite width equal to 2. An analogous characterization and results for the groups of infinitely dimensional triangular and unitriangular matrices are established in the last part of the paper.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gidi Amir - The Liouville property for groups acting on rooted trees

This is a summary on verbal subgroups in the groups T(∞, K) and UT(∞, K) of infinite dimensional triangular and unitriangular matrices over a field K, |K| > 2. The characterization of the lattices of verbal subgroups in these groups is presented, and the width of verbal subgroups generated by non-commutators, powers and (generalized) Engel words is given [2, 3, 4]. The groups T(∞, K) and UT(∞, ...

متن کامل

Presentations of the Schützenberger product of n groups

In this paper, we first consider n × n upper-triangular matrices with entries in a given semiring k. Matrices of this form with invertible diagonal entries form a monoid Bn(k). We show that Bn(k) splits as a semidirect product of the monoid of unitriangular matrices Un(k) by the group of diagonal matrices. When the semiring is a field, Bn(k) is actually a group and we recover a well-known resul...

متن کامل

QUASI-PERMUTATION REPRESENTATIONS OF SUZtTKI GROUP

By a quasi-permutation matrix we mean a square matrix over the complex field C with non-negative integral trace. Thus every permutation matrix over C is a quasipermutation matrix. For a given finite group G, let p(G) denote the minimal degree of a faithful permutation representation of G (or of a faithful representation of G by permutation matrices), let q(G) denote the minimal degree of a fai...

متن کامل

QUASI-PERMUTATION REPRESENTATIONS OF METACYCLIC 2-GROUPS

By a quasi-permutation matrix we mean a square matrix over the complex field C with non-negative integral trace. Thus, every permutation matrix over C is a quasipermutation matrix. For a given finite group G, let p(G) denote the minimal degree of a faithful permutation representation of G (or of a faithful representation of G by permutation matrices), let q(G) denote the minimal degree of a fa...

متن کامل

A simple generalization of the El-Gamal cryptosystem to non-abelian groups II

The MOR cryptosystem is a generalization of the ElGamal cryptosystem, where the discrete logarithm problem works in the automorphism group of a group G, instead of the group G itself. The framework for the MOR cryptosystem was first proposed by Paeng et al. [13]. Mahalanobis [10] used the group of unitriangular matrices for the MOR cryptosystem. That effort was successful: the MOR cryptosystem ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IJAC

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2012